Ngày 1.
Thời gian làm bài : 180 phút (không kể thời gian giao đề)
Ngày thi thứ nhất:6/1/2016
Bài 1 (5 điểm). Giải hệ phương trình:$\left\{\begin{matrix}6x-y+z^2=3 & & & \\ x^2-y^2-2z=-1 & & & \\ 6x^2-3y^2-y-2z^2=0 & & & \end{matrix}\right.(x,y,z\in\mathbb{R})$
Bài 2 (5 điểm).
a)Cho dãy số $a(n)$ xác định bởi $a_{n}=\ln(2n^2+1)-\ln(n^2+n+1)$ với $n=1,2...$.Chứng minh chỉ có hữu hạn số $n$ sao cho $\left \{ a_{n} \right \}< \frac{1}{2}$
b)Cho dãy số $b(n)$ xác định bởi $b_{n}=\ln(2n^2+1)+\ln(n^2+n+1)$ với $n=1,2...$.Chứng minh tồn tại vô hạn số $n$ sao cho $\left \{ b_n \right \}<\frac{1}{2016}$
Bài 3 (5 điểm). Cho tam giác $ABC$ có $B,C$ cố định,$A$ thay đổi sao cho tam giác $ABC$ nhọn.Gọi $D$ là trung điểm của $BC$ và $E,F$ tương ứng là hình chiếu vuông góc của $D$ lên $AB,AC$
a)Gọi $O$ là tâm của đường tròn ngoại tiếp tam giác $ABC$.$EF$ cắt $AO$ và $BC$ lần lượt tại $M$ và $N$.Chứng minh đường tròn ngoại tiếp tam giác $AMN$ đi qua điểm cố định
b)Các tiếp tuyến của đường tròn ngoại tiếp tam giác $AEF$ tại $E,F$ cắt nhau tại $T$.Chứng minh $T$ thuộc đường thẳng cố định
Bài 4 (5 điểm). Người ta trồng hai loại cây khác nhau trên một miếng đất hình chữ nhật kích thước $m\times n$ ô vuông (mỗi ô trồng một cây).Một cách trồng được gọi là ấn tượng nếu như:
i)Số lượng cây được trồng của hai loại cây bằng nhau
ii)Số lượng chênh lệnh của hai loại cây trên mỗi hàng không nhỏ hơn một nửa số ô của hàng đó và số lượng chênh lệnh của hai loại cây trên mỗi cột không nhỏ hơn một nửa số ô của cột đó
a)Hãy chỉ ra cách trồng ấn tượng khi $m=n=2016$
b)Chứng minh nếu có một cách trồng ấn tượng thì cả $m$ và $n$ đều là bội của $4$