Thứ Tư, 5 tháng 12, 2012

Chứng minh $$\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}\leq \frac{3}{4}$$

Cho các số dương $a,b,c$ thỏa mãn $abc=1$. Chứng minh
$$\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}\leq \frac{3}{4}$$
Lời giải 
Do $abc=1$ nên lấy Logarith Napier ta có:
$$\ln a+\ln b+\ln c=0$$
Ta sẽ chứng minh bất đẳng thức phụ sau:
$$\frac{a}{a^2+3}\leq \frac{1}{4}+\frac{1}{8}.\ln a$$
Thật vậy xét $f(a)=\frac{a}{a^2+3}- \frac{1}{8}.\ln a$
Ta có : $f'(a)=\frac{3-a^2}{(a^2+3)^2}- \frac{1}{8a}\\ =\frac{(1-a)(a+1)(a^2+15)}{8a(3+a^2)^2}$
Vậy $f'(a)$ đổi dấu từ dương sang âm khi $a=1$. $f(a)_{Max}=f(1)=0$
Thiết lập các bất đẳng thức tương tự và cộng lại ta có:
$$\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}\leq \frac{3}{4}+\frac{1}{8}(\ln a+\ln b+\ln c)=\frac{3}{4}$$
Ta có điều phải chứng minh. Đẳng thức xảy ra tại $a=b=c=1$

Không có nhận xét nào:

Copyright © 2012 -