Với các bạn yêu thích Hình học,bài toán dưới đây là 1 vài bài toán quen thuộc:
\boxed{a^2+b^2+c^2 \ge 4\sqrt{3}S }
Đây được gọi là Bất đẳng thức Weitzenbock.
Chứng minh
Sử dụng phép thế Ravi đặt a=y+z; b=x+z; c=x+y với x,y,z>0 . Bất đẳng thức cần chứng minh
\Leftrightarrow \begin{pmatrix} (y+z)^2+(x+z)^2+(x+y)^2 \end{pmatrix}^2\ge 48(x+y+z)xyz
Thật vậy ta có VT\ge (4xy+4xz+4yz)^2\ge 16(xy+xz+yz)^2\ge 16.3xyz(x+y+z)=48xyz(x+y+z)
Vậy bài toán được chứng minh. \blacksquare
Và 1 bất đẳng thức chặt hơn,được gọi là Bất đẳng thức Finsler-Hadwinger
\boxed{a^2+b^2+c^2 \ge 4\sqrt{3}S+(a-b)^2+(b-c)^2+(c-a)^2}
Chứng minh
Khai triển ra ta có bất đẳng thức trên viết lại thành 2(ab+bc+ac)-(a^2+b^2+c^2)\ge 4\sqrt{3}
Cách 1: Sử
dụng phép thế Ravi ta đặt a=y+z;b=x+z;c=x+y với x,y,z>0, bất
đẳng thức cần chứng minh \Leftrightarrow xy+xz+yz\ge
\sqrt{3xyz(x+y+z)}
Ta có (xy+xz+yz)^2-3xyz(x+y+z)=\frac{(xy-yz)^2+(yz-xz)^2+(xz-xy)^2}{2}\ge 0
Bất đẳng thức này luôn đúng.
Cách 2:\frac{2ab+2bc+2ac-(a^2+b^2+c^2)}{4S}=tg\frac{A}{2}+tg\frac{B}{2}+tg\frac{C}{2}
vì hàm số tg x lồi trên (0;\frac{\pi}{2}) nên theo BĐT Jensen ta có
\frac{2ab+2bc+2ac-(a^2+b^2+c^2)}{4S} \geq 3tg \begin{pmatrix} \frac{\frac{A}{2}+\frac{B}{2}+\frac{C}{2}}{3} \end{pmatrix}=\sqrt{3}
Vậy bài toán được chứng minh. \blacksquare
Cho a_1;b_1;c_1 là độ dài cạnh tam giác
A_1B_1C_2 có diện tích S_1 và a_2,b_2,c_2 là độ dài 3 cạnh tam
giác A_2B_2C_2 có diện tích S_2. Chứng minh:
\boxed{a_1^2(b_2^2+c_2^2-a_2^2)+b_1^2(c_2^2+a_2^2-b_2^2)+c_1^2(a_2^2+b_2^2-c_2^2)\ge
16S_1S_2}
Đây là mở rộng của BĐT Weitzenbock.
Chứng minh:
Cách 1:
Bổ đề: Bất đẳng thức Aczela
Bổ đề: Cho 2n số thực không âm a_1;a_2;...;a_{n};b_1;b_2;...b_{n} và 2 số thực không âm thỏa mãn:
\alpha^2 \ge \sum_{k=1}^{n}a_{k}^2
\beta^2 \ge \sum_{k=1}^{n}b_{k}^2
Chứng minh:
\left(\alpha^2-
\sum_{k=1}^{n}a_{k}^2 \right)\left(\beta^2-\sum_{k=1}^{n}b_{k}^2
\right) \le \left(\alpha.\beta -\sum_{k=1}^{n}a_{k}b_{k} \right)^2
Chứng minh:
Theo C-S:
\alpha.\beta \ge \sqrt{\left(\sum_{k=1}^{n}a_{k}^2 \right)\left(\sum_{k=1}^{n}b_{k}^2 \right)} \ge \sum_{k=1}^{n}a_{k}b_{k}
Viết lại BĐT dưới dạng:
\sum_{k=1}^{n}a_{k}b_{k}
+\sqrt{\left(\alpha^2- \sum_{k=1}^{n}a_{k}^2
\right)\left(\beta^2-\sum_{k=1}^{n}b_{k}^2 \right)} \le \alpha.\beta
Theo C-S:
VT
\le \sqrt{\left(\sum_{k=1}^{n}a_{k}^2
\right)\left(\sum_{k=1}^{n}b_{k}^2 \right)}+\sqrt{\left(\alpha^2-
\sum_{k=1}^{n}a_{k}^2 \right)\left(\beta^2-\sum_{k=1}^{n}b_{k}^2
\right)} \le \sqrt{\alpha^2.\beta^2}=\alpha.\beta=VP
Vậy bổ đề đã được chứng minh.
Quay trở lại bài toán,bằng công thức Herone:
4S_1=\sqrt{2\sum_{cyc}a_{1}^2b_{1}^2 -\sum_{cyc}a_{1}^4}=\sqrt{\left(\sum_{cyc}a_{1}^2 \right)^2-2\sum_{cyc}a_{1}^4}
4S_2=\sqrt{2\sum_{cyc}a_2^2b_2^2 -\sum_{cyc}a_2^4}=\sqrt{\left(\sum_{cyc}a_{2}^2 \right)^2-2\sum_{cyc}a_{2}^4}
Vậy bài toán có thể biểu diễn dưới dạng:
a_1^2(b_2^2+c_2^2-a_2^2)+b_1^2(c_2^2+a_2^2-b_2^2)+c_1^2(a_2^2+b_2^2-c_2^2)
\ge \sqrt{\left[\left(\sum_{cyc}a_{1}^2
\right)^2-2\sum_{cyc}a_{1}^4\right]\left[\left(\sum_{cyc}a_{2}^2
\right)^2-2\sum_{cyc}a_{2}^4 \right]}
Áp dụng BĐT Aczel,ta có:
VP
\le \left(\sum_{cyc}a_{1}^2 \right).\left(\sum_{cyc}a_{2}^2
\right)-2\sqrt{\left(\sum_{cyc}a_{1}^4 \right)\left(\sum_{cyc}a_{2}^4
\right)}
Ta chỉ cần chứng minh:
2\sum_{cyc}a_1^2a_2^2 \le 2\sqrt{\left(\sum_{cyc}a_{1}^4 \right)\left(\sum_{cyc}a_{2}^4 \right)}
Bất đẳng thức trên đúng theo Cauchy-Schwart.
Vậy ta có điều phải chứng minh. \blacksquare
Cách 2: Phương pháp hình học giải tích
Giả sử 2 tam giác A_1B_1C_1 và A_2B_2C_2 có các đỉnh trong mặt phẳng
có hệ trục tọa độ trực chuẩn là A_1(0;p_1);B_1(p_2;0);C_1(p_3;0) và
A_2(0;q_1);B_2(q_2;0);C_2(q_3;0).
Sử dụng bất đẳng thức x^2+y^2\ge 2|xy| ta có
a_1^2(b_2^2+c_2^2-a_2^2)+b_1^2(c_2^2+a_2^2-b_2^2)+c_1^2(a_2^2+b_2^2-c_2^2)
=(p_3-p_2)^2(2q_1^2+2q_1q_2)(p_1^2+p_3^2)(2q_2^2-2q_2q_3)+(p_1^2+p_2^2)(2q_3^2-2q_3q_2)
=2(p_3-p_2)^2q_1^2+2(q_3-q_2)^2p_1^2+2(q_2p_3-q_3p_2)^2\ge 2\begin{pmatrix} (p_3-p_2)^2q_1 \end{pmatrix}^2+2\begin{pmatrix} (q_3-q_2)^2p_1 \end{pmatrix}^2
\geq 4|(p_3-p_2)q_1||(q_3-q_2)p_1|=16S_1S_2
Vậy ta có điều cần chứng minh.
Không có nhận xét nào:
Đăng nhận xét